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Molecular self-assembly provides a useful synthetic route to
many interesting supramolecular structures and devices.1 Co-
valent2 and ionic3 self-assembly methods have been used to
make multilayer thin films with cooperative electronic and
optical properties, including electroluminescence,4 second-
harmonic generation,5 and photoinduced electron transfer.6

Because these effects depend critically on supramolecular
structure, an important goal is to develop simpler and more
reliable techniques for juxtaposing the active
componentssphotoactive and electroactive moleculessin well-
defined structural arrangements. Another ongoing challenge is
the development of better tools for characterization of these
assemblies on the nanometer length scale. Probes such as
ellipsometry, X-ray diffraction, and UV-vis spectroscopy
provide information that is averaged over macroscopic dimen-
sions and are often unable to differentiate between possible
structures.
Ionic multilayer films made from organic polyelectrolytes

contain oppositely charged polymer strands that intertwine, and
there are no sharp boundaries between sequentially grown
layers.7 Related thin films made from two-dimensional inor-
ganic polyanions such as clays8 andR-zirconium phosphate (R-

ZrP)9 are thought to be structurally analogous to ionic inter-
calation compounds, in which the stratification of inorganic and
organic components is well defined. It is not known, however,
whether the contents of these layers are mixed in the adsorption
process. Each adsorption step appears to produce a single
monolayer in some cases9 and multiple layers in others.8 In
this paper, we report a study ofR-ZrP/poly(allylamine hydro-
chloride) (PAH) thin films, in which energy transfer between
fluorescent probes serves as a “spectroscopic ruler”. A com-
parison of theoretical and experimental energy transfer efficien-
cies for many different layer sequences shows that there is little
or no bilayer formation or interlayer mixing during the adsorp-
tion process. These results underscore the usefulness of this
surface assembly technique for device applications. Specifically,
this study shows that it is possible to construct solid state photon
antenna composites with energy transfer efficiencies approaching
unity.
The polycation PAH was tagged with fluorescein (Fl) and

rhodamine B (RhB) using modified Schotten-Bauman condi-
tions.10 UV-vis absorption spectra gave chromophore loadings
of ca. 1:20 and 1:50 for the Fl-PAH and RhB-PAH polymers,
respectively. Sequential adsorption of these polymers and
colloidal R-ZrP onto glass slides, using conditions similar to
those described previously forR-ZrP/PAH films,9,11 resulted in
polymer coverages of (3-4) × 10-10 equiv/cm2 on each side
of the glass and ellipsometric film thicknesses (measured on
silicon substrates) of 22 Å per anion-cation layer pair. The
increase in thickness of these bilayers relative toR-ZrP/PAH
(14-16 Å per layer pair) reflects the size of the probe molecules
and possibly their effect on the coiling of the polymers at low
ionic strength. There was no observable birefringence in the
absorption spectra of these films, suggesting random chro-
mophore orientation within the layers.

Energy transfer between Fl and RhB proceeds by a Fo¨rster
mechanism, which provides a quantitative probe of intermo-
lecular distances within supramolecular assembies.12 The rate
of energy transfer can also reflect the sensitivity of probe
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molecules to changes in polarity or local pH;13 in the present
case, however, the chemical environment was kept constant.
By varying the number ofR-ZrP/PAH “spacer” bilayers between
layers containing Fl-PAH and RhB-PAH, it was possible to
create assemblies in which the Fl to RhB distance was either
smaller or greater than the Fo¨rster radius, which is ca. 40 Å.14

Energy transfer efficiencies (ø) were calculated from steady-
state emission spectra of the thin films. Values ofø obtained
from the enhanced emission of the acceptor (RhB) and quench-
ing of the donor (Fl) emission typically agreed within 2-5%.
Table 1 shows a comparison ofø values obtained experi-

mentally and by Monte Carlo simulation of the energy transfer
reaction for different layer sequences.15 The agreement between
experimental and calculated values is striking. This comparison
provides an important check of the structural model of these
films suggested by ellipsometry. Consider, for example, the
sequence of three adsorption steps RhB-PAH,R-ZrP, Fl-PAH.
If single smooth monolayers are deposited in each step, the
structure is RhB/Fl, where / signifies anR-ZrP layer. On the
other hand, if bilayers grow in each step but cover only 50% of
the surface, the local geometry is RhB-RhB//Fl-Fl or RhB/
RhB/Fl/Fl (sequences like the latter have been suggested for
silicate multilayers8). The observed values ofø rule out all but
the first structure, for which good agreement (ø ) 0.62, 0.70)
is found with theory. The last structure can be made deliberately
in seven adsorption steps, and again the agreement between
experiment and theory (ø ) 0.35, 0.36) strongly supports a
model in which each adsorption step produces either a smooth
polycation layer or a single layer ofR-ZrP sheets.
When the donor-acceptor distance is comparable to or greater

than the Fo¨rster radius,ø is also a sensitive function of the
mixing of polycations or interpenetration of layers. Figure 1
illustrates this point for arrangements in which a single Fl-
PAH layer is flanked by RhB-PAH layers with variable
numbers ofR-ZrP/PAH spacers between. Efficiencies were
calculated for acceptor layer “widths” of 0, 6, 18, and 36 Å. At

short donor-acceptor distances, the mixing of layers has little
effect on the calculated efficiencies. However, at larger
distances there are significant differences, with only the zero-
mixing cases (0 and 6 Å layer widths) providing good fits to
the data. This calculation provides good evidence that a
polycation layer, once adsorbed, does not desorb or mix with
other polymer layers in the subsequent layer growth/washing
steps.
To demonstrate the potential for making very efficient energy

transfer assemblies by this technique, a system containing both
donors and acceptors in the same layer was prepared by
adsorption of a mixture of Fl-PAH and RhB-PAH solutions.
In this case, both the simulated and experimental efficiencies
were 0.89 (Figure 1). This is the theoretical limit for a single-
layer system at this low (1:50) loading of RhB on PAH. Higher
efficiencies should be attainable with higher acceptor loadings.
Other systems with efficiencies as high as 0.95 were prepared
by sandwiching one donor layer between three acceptor layers.
We note that this assembly technique provides a structurally
tunable and synthetically very simple alternative to other
biomimetic light-harvesting systems, such as fluorescent donor-
acceptor supermolecules,16 polymers,17 covalently bound mono-
layers,18 and Langmuir-Blodgett films.19
This comparison of experimental and theoretical energy

transfer efficiencies has shown that it is possible to control the
morphology of self-assembled ionic films deliberately and
precisely on the angstrom length scale. Energy transfer ef-
ficiencies near unity are achieved with properly designed
systems. The possibility of extending this work to the creation
of more complex biomimetic systems, which combine both
energy and electron transfer functions, is currently being
explored.
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Table 1. Comparison of Measured and Calculated Energy Transfer
Efficiencies for Different Donor-Acceptor Gometries

system ø measured (calcda)

RhB+ Fl 0.89 (0.90)
RhB/Fl/RhB 0.82 (0.81)
RhB/RhB/Fl 0.72 (0.73)
RhB/PAH/Fl/PAH/RhB 0.39 (0.41)
RhB/PAH/PAH/Fl/PAH/PAH/
RhB

0.13 (0.11)

RhB/Fl 0.62 (0.70)
RhB/PAH/Fl 0.19 (0.27)
RhB/PAH/PAH/Fl 0.05 (0.06)
RhB/RhB/Fl/Fl 0.35 (0.36)b

a Simulation parameters:Ro ) 40 Å, zero-layer interpenetration. /
denotes anR-ZrP layer.bCalculated usingRo ) 40 Å for both the
Fl-Fl and Fl-RhB energy transfer reactions.

Figure 1. Energy transfer efficiency (ø) versus average donor-acceptor
interlayer distance for Fl-PAH/R-ZrP systems containing two RhB-
PAH layers and theoretical efficiencies obtained from Monte Carlo
simulations. Calculated values are shown for several RhB-PAH layer
widths.
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